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CONVERGENCE OF A SECOND-ORDER SCHEME 
FOR SEMILINEAR HYPERBOLIC EQUATIONS 

IN 2 + 1 DIMENSIONS 

ROBERT GLASSEY AND JACK SCHAEFFER 

ABSTRACT. A second-order energy-preserving scheme is studied for the solution 
of the semilinear Cauchy Problem utt - ux - Uyy + U = 0 (t>0;X,yeR). 
Smooth data functions of compact support are prescribed at t = 0. On any 
time interval [0, T], second-order convergence (up to logarithmic corrections) 
to the exact solution is established in both the energy and uniform norms. 

1. INTRODUCTION 

We study the numerical approximation to a smooth solution of the semilinear 
Cauchy Problem 

(1) u~ - u - u +u3 =0 (t > 0, x, y E R), 
(2) u(, x, y)= 0(x,y), ut(O, x, y) = (x, y). 

The data 0, Vt are to be smooth and of compact support. The cubic nonlin- 
earity is chosen for convenience; the method easily extends to any odd power 
U2N+1, N 1 2 

An energy-preserving scheme for equations as above has been known for some 
years (cf. [8]). We have proved convergence for the analogous one-dimensional 
situation (unpublished); the same result is obtained in [9]. In both cases, an 
L"-bound on the discrete solution follows easily from the Sobolev inequality 
and the standard energy estimate. However, in space dimension two, one would 
need L -estimates on second derivatives to conclude such an L??-bound. Yet, 
in analogy to the continuous case, it is difficult to obtain H -estimates directly: 
an L?-bound seems to be needed first. The novel aspect of the present work is 
that we use a recently obtained representation for the discrete solution in order 
to establish the convergence to the exact solution in the uniform norm. The 
rate of convergence is second-order, modulo logarithmic factors. As pointed 
out above, H -convergence then follows as well. 
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To describe the scheme for (1), choose a space stepsize Ax = Ay _ h > 0, 
and let At > 0 be the time step. As usual, we denote 

(3) Xk= kh, yj= jh, tn= nAt (k, jeZ, neN), 

(4) Ukj - (t , Xk X Yj) X 

where u is the exact solution to (1), (2). We choose the largest possible time 
step At as allowed by the classical CFL condition: 

(5) At = h/V. 

We let Lh be the usual approximation to the wave operator O 2 _ A via centered 
second-order differences: 

(6) (Lhu)k 
n 

_ U 2 
Un 

+ Ukj 
n 

Lastly, we write 

(7) G(u)=| fs3ds= 

Then the scheme we analyze is 

(8) (Lhu)kj + -j 
k =k0 

with the initial values 

h9 k kj - 
Atj '2 k k t* k 5 k 

where 

kj =h[ k+l,j +qk$11 +kl,j+ +k,ij-1 4k kji 

Thus we are required to solve a nonlinear implicit equation at every time step. 
Solvability follows provided one has uniform control on the discrete solution 
(see ?2), and each will have compact support. 

In ?4 we show that the solution of the scheme converges to the exact solution 
ins energy norm. We derive there certain discrete Sobolev type inequalities as 
well. 

The problem remains of establishing L??-convergence to the exact solution. 
In ?3 we write a representation for the solution of a nonhomogeneous discrete 
wave equation; this comes from [3]. Other properties of the kernel S, and an 

2~~~~~~~~~~~ 

LT-estimate, are also given. Finally, in ?5 we apply this representation to the 
scheme (8) to derive the required uniform inequalities. 
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In order to state our main theorem, we introduce the following standard 
notation. Given a sequence {Unj}, k, j E Z, n E N, we write 

(10) ||Un|loo = SUP Unjl 
k,j 

k 

(11 l ) (unlp k h2 

for 1 < p < o, h as above. The energy density En is defined by 

(12) n 1 [(In+1 -n n+2)2 + (Un u+1 2 

+ Un+1 Un 2 + (Un 1 n+1 2 

and the energy norm by 

(13) 1II Un 1112 h2 Een 
i,j 

All sums will in fact be finite, since Uk1 will have compact support. 

Theorem. Let T > 0 be arbitrary, and let the exact solution u of (1), (2) be 
approximated by the solutions uk; of the scheme (8), (9). Assume the data 
q$, y E CO (R2). Let nAt = T, h = VlAt. Then there exist constants cT 

and kT, depending only on the data and on T, with the property that whenever 
kT 'At < 1, we have 

||| u(t, U)-a | < cTAt2 

Sup lu(t , Xk, yJ) - UkI < CTAt* [In At k,J 

Constants will change from line to line and will be denoted by c. Those 
which depend on T will be written cT, etc. All sums, e.g. Ei j uij, are taken 

over all of Z2 unless otherwise noted. 

2. THE SCHEME AND THE EXACT SOLUTION 

We first cite some properties of the exact solution u. Thus consider the 
equation 

(1) - uutt-A+3=0 (X,yeR, t>O) 

with (u, ut) given by (0, Vg) E at t = 0. Here, A = X + 09 . 

Lemma 1. Given data (0, Vg) E CO' and an arbitrary time T > 0, there exists 
a unique global CO??-solution u of(1), (2) enjoying thefollowing properties: 

(i) l (U2 + IVU12)dx+ 
I U4 dx = const, 

(ii) sup Ju(t, x)J + sup |D au(t, )|L2 ? CTa < 0 
T>t>?O,xER2 

for any multi-index a. 
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This situation has been treated by many authors; we refer to [1, 7]. The 
uniform norm is actually uniformly bounded and, in fact, decays (cf. [2, 4]). 
Once an L0-estimate is known, L2_bounds on higher derivatives follow easily 
by differentiating the equation and applying energy estimates. 

We introduce here also the free solution v (t, x): 

(14) (7t2 _-A)v = 0 (t > O, x, y E R), 

(15) v(O,~ x, y) = 0(x, y), Vt(O, x, y) = Vr(X, y). 

v and u share the same data. 
Now consider the scheme (8), (9) whose solutions un1 are to approximate 

u(tn, Xk, yj). Since At = h/V\- by (5), we may rewrite (8) as 

un+1 = Un-I + 1 [Un + Un + un + Un ] 
kj = ki 2 k+, + Uk-lI,j kj+i k j- 

(16) -At2 G(uk1 )-G(u7) 1- 
F n+I un-i 

[ kj Ukj J 
with u0, uI given by (9). 

We define for u #A v 

(17) H(u, v) = G(u) - G(v) 
= 

(u + v) ( 
2 

+ v2 
(17) H(u,v)- ~ ~ ~ - (u v ) 

Then (16) is 

un+1 = Un-I 1 + n +u nj1 nk+ nkj + [uk+ i+ ukIj +Uk,j+l +uk,] 

At n-i) 3 At n+1 n+1 2 n-1 2 n+1 n-1 

4-( kj) 
4 

Ukj [(Ukj ) + (Ukj )+ (kj )(kj ] 

or 

()[1+4 Uk)+k Ukj ) +Ukj Ukj }JUkj = ]kj 

where 

(1) n1-uIJ 1 n + n Atn2 3 
(I 9) bk =-U kj + -[Uk+ + U -i j + Uk l+uk j-i]- (Uk) 

We can write (18) as an implicit equation 

(20) S = g(s) 

to be solved for s = Uk1 , with 

bkn. 
(21) g(s) =kj 

1 +At 2{s2 +Su nJ + (Un71)2}/4 
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is represented as follows: 

(24) un+1 = n+I + nS). 
Ukj Vkj + (Sf)kj 

Here, V1kj is the "discrete free solution", and Sf is a linear operator whose 

action on f is given by a convolution of f with a discrete kernel S 1 defined 
by 

A pm/im - 1l- 2m 
(25) pk L(-4)o i (l-m)() Pk 

=O 
-m kIkIp-m/ 

Lemma 3 (from [3]). (i) We have Slk>0; in fact, for k > 0, 

S = (I P) * 4P [p(k,12pk)(0)]2 Sk-(k+p) P 

where P` ')(x) is the Jacobi polynomial of degree p with parameters a, fi 
(cf:[6]). Here, the parameters range in Ik =0, 1, 2, p = O, 1,..., [1/2], 
I = 0, 1 . Outside these ranges, S> is defined to be zero. 

(ii) There holds Ep k S k = (1+ 1) *2l 

(iii) Let = (01 62) be the dual Fourier variables in the discrete Fourier 
Transform 7: 

0 ~~i(kOI +16 2) ukIJFu(O). U 962 )-- Ee ( k j_ u(f). 
k,j 

Further, define an angle tu by 

(26) cos@ = (cos 01 + cos 9 

Then 
i-1 F sin(n + 1 ) -n 1 [n/2] n 

L sin iy kj 2 k E jIkI+jl,n-2p pk' 
kj P=O 

Proof. (i) is Theorem 2 of [3]. There, it is also shown that S satisfies the 
recursion 

(27) S~IkI 1-S>j~1 +s'1 1-1 1-1 1-2 
(27) SP, lkl = Sp, kl + Sp_1, Ikl+ Sp,Ikl+Sp _, jkk - Ip.1 Ikj* 

Since S > 0, we may sum this over p, k to obtain (ii) (cf. the last page of 
Spk- 

[3]). For (iii), we obtain from the material following Lemma 1 of [3], 

1 sin(n + 1) [n/2] n n ~ si(n+1@ j= E 2 (-4)m ~ ~ 
(28) [L slnyi kJ M=O m 

[(n-2m)/2] 

E nP )I2m ( n-2m 1kl+ljl,n-2m-2p' 
P=O jkj~ I+ pJ jjj,-m2 
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We replace p by p + m and then invert the m, p summations. When use is 
made of (25), (iii) results. o 

We do not require the explicit form of Slk 

Given these facts about S we can write the free solution vk+1 'in (24) as 
follows: 

[(n- 1)/2] 
n+1 1-n n- 1i Vj= -2 L L 'k-aoa, 

p=O a, 

(29) 1n/2 1a-kI+fl-j1=n-1-2p 
(29) ~~~~~~[n/2] 

+2- Z z Sn (<bf + AtY/Vaf +4 t 21At Dckf)* 
p=O a, 

Ia-kj+fli-ji=n-2p 

This is the Corollary to Theorem 1 in [3]. Theorem 1 of [3] itself gives the form 
of the operator S f: 

(30) (Sf)n= 2 n-I [1/21 /p, - 
(30) k = At 1 27' S P k- afafl 

1=0 p=O a,fi 
Ia-kI+lfl-jj=1-2p 

We require one more piece of information about the kernel 

Lemma 4. There is a constant c such that 

[n/2] 

ZZE [Sk1n <2c 4n ln(n + 2) 
p=O k 

for all n = 1, 2, .... 

Proof. Consider the result of squaring the expression in Lemma 3, part (iii). 
When this is carried out, one obtains many "cross-terms" involving terms of the 
form 

ljkl+ ljl, n-2p lkl+lIjl, n-2qSpkSqk 

for p : q, each of which vanishes. Thus, the Kronecker ('s in (iii) of Lemma 
3 act as if they were an orthogonal set, and we get 

E.I lsin(n + l)@ niE2 [n/2 
(31) [ ( s ~ ))]J 4f Z (5kl+ljl,n-2p[Spk1 

We sum this over all k, j. Performing the j-summation first, we see that there 
are at most two nonzero terms on the right, each of which is unity. Hence, from 
(31) and the Parseval equality we get 

(32) [n n 2 sin(n + f[da d 
p=O k 
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We call J' the integral on the right here. By (26), 

cos Y' = -(cos 01 + cos 02) ( 2 ) cos 02) 

Introducing new variables x = (01 + 02)/2, y = (01 - 02)/2, and using elemen- 
tary considerations, we obtain 

n1,r2 n1r2 - sin(n + 1)@/ 12 

n~=c 1010 [ sin dxdy, 

where now cos V = cos x cos y, and hence 

(33) @ = 2 -sin1(cosxcosy), 0??in < < 

Denote by A = {(x, y): 0 < x, y < 7r/4}, and let Ac be the relative com- 
plement of A in [0, 7r/2] x [0, 7r/2]. On Ac, at least one of x, y lies in 
the interval [7r/4, 7r/2], and hence cosxcosy < 1 * I/X. It follows that 
sin 1(cosxcosy) < sin1 (1/IV2) = 7r/4, and hence that @ > 7r/4 on Ac. 
Therefore, sin V is bounded below, and the integral over Ac is bounded uni- 
formly. 

On A itself we use the inequality 

/sin(n + 1)@/' 2 
1)2 -2) 

sin@) ?cmin((n+) 

and these observations: First, for 0 < q < 7r/2 we have 

(34) cos > I - 

by simple Taylor series. Secondly, on A we have 

cos@ =cosxcosy > 1/v/' I/X= 2 - 

and hence 

0 = 7r/2 - sin 1 (cos @/) < r/2 - sin- ( = 7r/3. 

By (34), then, 

(35) cs > I - 
22. 2v~~~~~ 

An elementary series argument shows that cosx < 1 X2 /4 for 0 < x < 7r/4. 
Thus, on A we have 

2 2 ~~~~ 2 X22 
Cos@= CosxCosy? (1 < X) (1-)=1_(x + y) + y 

4 4 4 ~~~~~~16 

< 1 (X 2+y2) 
+ 

16 (7 < 1 C(X2 + y2) with c>0. 

2 2 2 Combining this with (35), and defining p =x + y, we get 
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i.e., 

(36) > cp on A, with c > O. 

Therefore, we have 

IL cf minn( +l2 p-2}dxdy<cf min{(n+ 1) p }pdp 

1(n+I) 2 7r/2/2 dpi 
=c[j( (n +l1)pdp + - <?cln(n +l), 

/(n+ 1) P 

and the proof of the lemma is complete. 5 

4. ENERGY ESTIMATES 

In this section we make error estimates in the energy norm. We begin with 

the scheme in the form (8): 

(Lu)J Un-i I 
GUn-i (LhUi 

+ n kU ) Ukj 01 

hnj+n1 u- 

Multiply this by (UkJ+ - Un-) and sum over all k, j. We sum by parts that 

term which approximates Au. If we call 

en E [(U t2 u )k +$ {(u2 j-Ukj1 )(Uk+lj j-Uk) 

(37) n-Unl un+ 1 Un fln 

+(ukj+l - Ukj )(Uk j+ - Ukj)} 

n+1 n 
+ G(ukj ) + G(Ukj)' 

then we have the following 

-n ,n-1I -n 1O Lemma 5. (i) We have e = e ,and hence, e = e?. Thus, the scheme 
preserves a discrete energy. 

(ii) For every n, en is nonnegative and can be expressed by 

n 1 n+l n 2 n n+1 2 e 4t2L [(Ukj -Uk+lJ) + (Ukj-Uk+1 j) 
4tk,j 

+ (Un 
n 

- u n 2 + (Un _n+1 2 

+ 1 [G(un+l) + G(un )) 

k ,j 

(iii) Pure spatial differences evaluated at the same time can be bounded: 
2 i: tUn+1 l+1\21fl(U+1 n?1 2 n 

h Z L [ - Uk+2,j) + kj kuk,j+2) ]< Ce 
k,j 
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Remark. Recall the energy density definition e' in (12). We see that 

(38) An =E ekn + E[G(Ukj + G( kj)] 

k,j k,j 

as expected. 

Proof of Lemma 5. Part (i) is a standard calculation and is omitted. The sum- 
mation by parts produces no boundary terms, since U has compact support 
for each n . As for (ii), we write en (using At = h/V) as 

At2 - _ {G(ukj) + G(uki)}] 

k,j 
[(Un+I _ un 12 n+1 n 2 

+ 4j(uk,J?+1 -Uk,j 1?1)] 

1 k kjn+1 + n(uk+l1jj-Ukj) 

(39) k,]j 
k,j 

+ (Un+l +1(Unl - utn)] 

= dE LUkIj - +Ukj?k -iUk+j ) + 2( Un+ I un+1 )( Un un)] 

+1 [(Un+lI- n )2 + n+I n )2 

k,j 

k ,j 

+2 
k,j+1 -k j ) 

k,j+l1 -kj)] 

Now we use the elementary relation 

(A - B)2 + (C - D)2 + 2(C - A)(D - B)=(A - D)2 + (B - C)2 

in each of the above lines, and (ii) results. 
For the proof of (iii), we have from (ii) that, e.g., 

4At 2en > [(Un+1 - u )2+ (Un1 n +I)2 sE [ k -k+ 1 y) k (U -Uk+I j)2 ] 
k ,j' 

Z Un+l1 n \2 ~n n?I\ 2 
= E [(Uk1 -Ukk+1j) + (Uk+Ij-Uk+2j)] 

k ,j 

However, since 
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(as can be established by elementary calculus), we obtain 

4At * e > -E (Un+1 - un+1 2 2 
2 k~L uj uk+21j) 

k,j 

and this is (iii). o 

Now denote by T 
n the truncation error, i.e., the amount by which the exact 

solution u fails to satisfy the approximate scheme: 

n U(tn?l , Xk, yj) 2u(t , Xk, yj) + u(tn-i , Xk,y) 
Zkj 

~~~~~At2 

- 2 [ju(t , +, yj) + u(tn, Xk , yJ) + u(tn, Xk, Y1?1) 
(40) hI( 

k1kI5y jl 

+ u(tn, Xk, y-I) -4u(tn, Xk I yj)] 

+G(u(tn , Xk, yj)) - G(u(t' , Xk y yj)) 

u( n+1 , _k y U(tn- , Xk k Yj) 

Simple Taylor series arguments give us 
2 

Lemma 6. On any strip [0, T] x R , there is a constant CT > 0 such that 

ITkII?cTAt2 kj I < CT */\t . 

In the proof we simply take enough L -derivatives in Lemma 1 so that 

sup liD u(t, *)I o < CT 
t<T 

via the Sobolev inequality. Incidentally, we have an estimate for IIu(t)112 in 
terms of cTIIVu(t)II2 by the support property and the Poincare inequality. 

We will need discrete versions of certain of these classical inequalities, which 
take into account the special type of square integrability which arises from our 
energy estimates. 

Lemma 7. Let the sequence {Wnj} have compact support for each fixed n. Let 

[0, T] be an arbitrary time interval with nAt = T, h = v'2At. Then 

E(Wnl 2 < cT 2E (Wn+l _ n+1 2At -2 
kj-Z kj Wk21)jA 

k,j k,j 

Remark. This is a discrete Poincare inequality. 

Proof of Lemma 7. Using the support property, we write 
k 

w n+1 (Wn+l n+1 
Wkj = 2 j(w11 -w 2,j) 

1=-n-c 
Step 2 

for some constant c. Then 
1 ~~~~~~~~1/2 

n+1 1/2 (Wn+l n+1 2 
lWkj 

/ < cn W| - ( w21j) 



98 ROBERT GLASSEY AND JACK SCHAEFFER 

and hence 

n?1 2 < 2: Wn?l n+1 2 2 (w nI nI 

(wk1 ) < cn w -w12,j) =cTj WI-2'j) 

k,j 1,1j 1,i At 
Lemma 8. Let h > 0, and let {wkJ} be any sequence of compact support. Define 

(41) 5lWk = Wkj - Wk-2,j Wk - Wkk j-2 (41) 6 Wkj - h ' 2 Wkj h 
As in (13), define, for i=1,2, 

I = Z II ,iWk JIh 
2 

1wj1j2 = ( (Wkjh) 
h 

k,j k ,jJ 

Then: 
(i) There holds IIW112 < 1kW1w11 11k2w111 

(ii) For any integer N we have 

116 i(W)NII 1 < CNIIiW 11211(W) 112 

Remark. (i) is a discrete analogue of the Sobolev inequality IIUIl/n(n-f1) < CI VUII1 

for x E IRn. 

Proof of Lemma 8. By the support property we can write 
k 

Wki = E (Wl1 WI-2j) 
1=-n-c 

Step 2 

for some constant c. Similarly, 

J 

Wkj (Wkv - Wkl,v2) 
v=-n-c 

Step 2 

Therefore, 

lWkjl ? Wj - 
W1-2Ji] [ lWkv - 

Wk,v-21 

Summing this over k, j, we obtain 

lWkjI2 < E Wlj -w2 jWi [j lWkv -Wkv-211 

[h E z16wjI1 h EZ 12WkvI1 

and this proves (i). 
For the proof of (ii) we recall the identity 

N-1 
N N ) k N-i-k 

k=O 
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from which we get 
NX -YNI < c|x - Y(XIN-1 + YIN-1) 

Thus, 

|1(Wk) N l_l (wkj)N (Wk-2,j ) 

< c h -2, 
(wkjN- + lWk-2 jiN) 

We multiply by h2 and sum over k, j: 

k51(WN)HII < cEh 2IWkjI(IWki 
N- + lWk-2 Nji) 

k, j 

Den 

< 

2c 

(h231 w 

2) 

( 1/22(N-)2 
=2c||51 WI112 11 (W)N- 112 ' 

as desired. El 

Corollary. Denote by {unj} the solution of the discrete scheme (8), (9). Define 

6Un = |1U |un + 16 2U nI| 

Then the following estimates hold: 

(i) jUn 114 + k|U 112 < const. 
(ii) jUn 116 < const, |un 118 < const. 

Proof. From the energy equality in Lemma 5, part (ii), we get the bound on 

Ilun'14. Then, using part (iii) of Lemma 5, the bound on lIdun%12 follows. For 
part (ii) here, we apply parts (i) and (ii) of Lemma 8 with N = 3 and Wkj = 

Unkj 

11(Un) ? 112 < 1 (Un)3 11a12 (Un)31I 

? cH5 
n H ()2 n11U2 ? ClldlU 11211(U ) 112 1162U 1121( ) 112 

? CII unI2IIUnI4 < const. 

The bound on flunb 8 is similar. El 

Remark. It is clear that HIunIIp < const for any p, 4 < p < oo. 
Now we can estimate the error in the energy norm. Define 

(42) en nu(t ,xk, yJ)- un 

We recall the definitions 

(17) H(u, v) = G(u) G(v) 
I 

(u + V)(U2 + 2 

(13) ||| u 2= h 2 n 

k,j 

where 6ki is given by (12) as a sum of squares. 
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Theorem 9. Consider an arbitrary time interval [0, T] with nAt = T. Denote 
by gn the energy of the error en in (42): 

n n+1 n (e l -n+1 2 

+ en+1 n 2 +en n+1 2 
+(ekl -ekj+l) + (ekj-ej J+i) ] 

Then there exists a constant CT such that for At sufficiently small, 

el < c Tf'+ 
; t] 

Remark. The square of the energy norm of the error e is thus given by h2n '. 

Proof of Theorem 9. As is standard, we write the scheme (8) for Un and subtract 
from it the equation (40) defining the truncation error to get 

(L he)kj + H(u(t , x yj), u(t n-, , ) 
n+1 n-I n 

- H( Ukj+ , Ukj )Tkj = ? 

with the initial values 

kj = u(0, Xk, yj) - = 0, 

ek1 = U(t X Xk ) Y- (y kj + 2ilDk +j kj) 

2~~~~ 

uniformly on [0, T] x Z 
Applying the mean-value theorem, we can write the nonlinear term above 

(i.e., the difference of the H's) as 

(46) Hu. ek j + Hv. ekIj 

where the overbar means the gradient of H, VH = (Hu, Hr), is evaluated at 
some intermediate point on the line segment joining 

(U(tn+l Xk, yj), u(tn1 , Xk, yj)) and (Unj , u7 n) 

n+1 n-1 We use the expression (46) in (44), multiply the result by ekj - ekj , and 
then sum over all k, j. As in (37) and Lemma 5, we then get 

+ , 17uekj (ekj - ekj ) + 7H en-j (ekj n-ek 

(47) k,j 
'jn1 n+1 n-I -E 

TkJ (ekj ekj1 )o. 

k,j 

n+1 n- In each of the last three terms there appears the expression ek] - ekf , for 



CONVERGENCE OF A SECOND-ORDER SCHEME 101 

which we have the 12-estimate 

(eknj-iek 2 E[(+l e k j) + (ek+l,j ekj') 

k,j k,j 

(48) ?2Z (e n+1 _en )2+ 2 L (e+n ene )2 

k,j k,j 

< 8At2 . n 
+8t2 n- 1 

Hence, for the truncation error term, we have by Lemma 6 and the support 
property, 

Tk j(ekj ekj) ?CTt | ekj -ekj1 
k,j k,j 

kI+lIjl<cn 

(49) < c/t * (cn 2)1/2 (e n+1 - e )2 )2 

< CTAt * n . ,t(jn + rn-l )1/2 

Ct2A(n + n-I)1/2 < CAt3 + CAtt(j + j )n 
' 

where we have used (48). 
Next, for the Hu-term in (47), we write 

77 E 
u ekj (ekj - ekj) 

k,j 

1/4 1/4{ 1/2 

(50) 
< 

u A214 b le n+1 4 1 (e n 1 )- en 21 

u~~~ e~~~~ 1/4 )/ 

? CAtQj;n + ||nl)1/2 17e1n+1 4 

where we have used (48). For the last term, we have by Lemma 7 and the 

definition of the norm in Lemma 8, and from the statements (i), (ii) there, 

Ze n+1 4 2 Ien+1 14=At-21 en+ 12 211 
ekj I cA =CcAGt(e4 H2 

k,j 

< Ct-21,5n+1)2 11 n+ 12 

? A 2 I (en 121 't 2 IIen+1 12 Ien+1 12 

-2 2 '~~n 2'n2 2 'n2 
< cAt *2.At2 .~ *ncT 2'nt2 <?CTAt2(X-n)2 
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Inserting this in (50), we get 

EH. kj (kj ekj | 

(52) k,j / 

< CTAt ( + jnl) [E 1/u,4 

Now by definition (1 7), HU (and HV as well) grow at most quadratically: 

(53) v I < C(U2 + v2). 

Hence, 

(54) ii ?4< C[(U(tn+l , X Yj))8 + (u(t-1 
n 

X yj))8 + (un+1)8 + (un-1)8]. 

Now by the Corollary to Lemma 8, the discrete 18-norm of Uki is bounded. The 

L8-norm of the exact solution is bounded by the energy bound on the L4-norm 
and by Sobolev. Hence, 

(55) Z77HUK14 < c At? 
2 

k,j 

which, when inserted into (52), gives us 

(56) l Hul lekj |(ekj -ekj )< CTAt(F + f 
k,j 

The term in (47) involving HV can clearly be estimated in the same way. 
Inserting the estimates (49), (56) into (47), we get 

(n 57 n- + CAt(F-n + -nf1) + CTAt, 

or 

(58) (1 -cTAt) < (1 + cTAt)X-n-1 + cTAt 

The constant CT here depends only on the data q, / and on T. For At 
small enough we have (1 - cTAt) 1 < 1 + 2cTAt, and so (58) yields 

(59) n < (1 + 4cTAt)8' + CTAt 

Iterating this, we get 
n-1 

e < (1 + 4cTAt)n Tt + cTt E ( + 4CTAt) 
1=0 

(60) < (1 + 4cTAt)%[-0 + CTAt2] 

+ 4CTT) [80 + C At] < CT[ + t2], 

which is the claim of Theorem 9. o 
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- 0 ~ ~ ~ ~ ~ ~ ~~0 1 We can now eliminate the F -term as follows. By choice of data for Uko, U 

we have 
e ?=O eI= O(At3), 

2 
the order bound being uniform on [O, T] x Z . Hence, 

'0 o 1 -2 2A< <c2At2. (61) t2 E (ek>) <c TAt At, < 2 
Atk,j k,j 

IkI+IjI<c/At 

Corollary. Denote the energy norm of the error ekn U(tn, Xk, y n) - uk1 by 

IIIen 1112 = At2 .n .Then on any time interval [0, T] with nAt = T, h = v'lAt, 
there exists a constant CT, depending only on T and the data, such that III en 

< CTAt2 for At small enough. 

5. UNIFORM ESTIMATES 

In this section we will show that the errors U(tn, Xk, yj) - un1 converge 

uniformly to zero at (essentially) the rate At2 . Thus, the hypothesis of Lemma 
2 will be superfluous, since supx t<T Iu(t, x)I is known to be bounded. We 

begin by estimating the convergence for the free solution. Let ?kj = Dkj + q . 

Lemma 10. Consider a discrete free solution: (Lhv)nj = 0, v,?1 = q5kJ' Vk = 

)kj +At + At2kj1/2. On any interval [0, T] with nAt = T, h = v'2At, 
there is a constant cT, depending only on the data and on T, such that 

SUp IV(t , Xk, yj) 
_ V ct2. 

k,j 
k kjI<CT 

Proof. Let the truncation error Tkj be defined by (40), with u replaced by v 
and the nonlinear terms dropped (i.e., G(.) 0_ O). We define 

(62)n 
n n 

(62) ~~~~~~Pkj = v (t, Xk Yi)- Vkj. 

Then Pkj satisfies the recursion 

n1+1 pflIl 
n,, + n[f+pl+ pnlj+pfn.]+ At2 -nl 

Pkj pn- + 2 k Pk-j +k j+ Pk,j- + tkj 

in analogy to (16). Since v E C4[[0, T] x R2] and is bounded in that space, 

Ifn ~ t2. |kj| CT5t 

The initial values are 

(63) P? = 0, Pkj = v(At, Xk X y1) - kj+Atkj + AD2kj] 

and hence 

(64) lPkjl = O(At3) 
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2 uniformly on [0, T] x 2 . The representation formulas (29), (30) then give us 

[n/2] 
n+ 2-nZ n 1 

Pkj+ = 2 E E Sp,k-aPafl 
p=O a,fl 

(65) l~~~~~~a-k j+jfl-jj=n-2p 
(65) nn-I [1/2] 

2 -N 1 ~~~~1 -n-i +At E 2 E E SP' ,k-aTafl 
1=0 p=O a, fl 

Ia-kj+jl-jj=1-2p 

By Lemma 3, part (ii), we have Ep, k k = (1 + 1) *21. Therefore, 

[n/2] 

pkj < cT2 AtL SP,k-a 
p=O la-kl+lj/-jl=n-2p 

n-I [1/2] 

(66) + cTAt4 E 2'E E 
1 

T I: ~~~Sp'k-a 
1=0 p=O Ia-kI+Il#-ji=l-2p 

n-l 

= CTAt (1 + n) + cTAt 4? (1 + 1) < CTAt, 
1=0 

as desired. n 

Theorem 11. Consider an arbitrary time interval [0, T]. Let nAt = T, h= 

v'lAt. Then there exists a constant CT, depending only on T and the data, such 
that 

sup Iu(t , Xk yj) - Uki < CTAt [ln A] 

for At sufficiently small. 

Proof. As before, we define the errors by 

(42) ekl 
= u(t I Xk y -kj 

and the truncation error T4n by (40). 
The error equation (44) can be written 

(67) ek1 = -ek + 
I n 

+ ek + ek + 
n 

j-1] 

+At n+A 
2 

en+1 nH, "I + At *Tkj +A\t 17 uekj +)Vekj, 

where we have used (46). The initial values are 

0 13 
(68) ek =0, ekj = L(At/ ) 

uniformly on [O. T] x 22 We represent the solution ekjFl of (67) using (24): 

(69) en+1 )n+1 + (e )n ekj (efree)kj NL kj 
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Here, efreen 1K CTt2 from Lemma 10, and 

n-I [1/2] 

(eNL)nI At 2 E2E 
(70) 1=0 p=o 

E Sp, k_a[Taa + un+ 1 1 + n-1-1] s ~+H77e~ +H7V eaf, ] SPkJaTafl n+- - ni- 

Ia-kI+/lJ-ji=l-2p 

By Lemma 6, Tk- = O(At2) uniformly on [0, T] x 2 . Hence, the truncation 
error term in eNL is dominated by 

n-1 [1/2] n-1 

(71) CT L L k/ T L(1+1) 2< CT 
1=0 p=0 la-kl<1-2p 1=0 

where we have used Lemma 3 (ii). 
Now consider the nonlinear term involving HU in the expression eNL; call 

it 2u . Our method of estimation will be such that the term 2v is handled in 
the same way. We write, for indices fl with Ifl - jI = I - 2p - 1a - k 

n' 2 2 (1/ (SP)2) 1/2( 1/4 

(72) ~~~~~~~1=0 P,a Pa ,f 

(72) (zee~;i/4) 1/4 

* E le., I 

In view of Lemma 4, the square norm of S appearing here is less than c 
21(ln(/ + 2)) 1/2 . The sum involving 1IU 14 has been dealt with in (53), (54); the 
result was given in (55): 

(55) E Iu 14 < cAt -2. 

As for the last term in (72), we recall (51): 

(51) E nekl C - TAt2(QS)2 C At2[F0 + At2]2 < 6 

k,j 

by Theorem 9 and (61). Thus, from (72) we get 

n-1 

1L < CTAt2 E ln/2(I + 2)[CAt ] I [CTAt6] 
1=0 

n-1 

(73) < c At3 E In'l /2 (I + 2) 
1=0 

< C At3 1n'/2(n + 1) n < cTAt2 [ln 1/2 
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for At sufficiently small. As mentioned above, the , -term is estimated simi- 
larly. Therefore, from (69) we conclude that 

sup le)j I < cTAt [ln +] 
k T It 

which proves the result. o 

Concluding remarks. 1. Suppose the nonlinear term were u" instead of u3, 
where p is odd, p > 5. The energy (both continuous and discrete) gives a 
bound on up+' in L1 , and Sobolev shows that uq is then bounded in L1 , for 
p + 1 < q < oo. Thus, the preceding analysis can be carried through for other 
power functions. 

2. We point out that we approximate u(At, Xk, yj) by ulj to third-order 

accuracy. This allows us to use only L and L2 estimates on the kernel S' Pk' 
and seems to be where the "loss of derivatives" problem arises. 
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