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CONVERGENCE OF A SECOND-ORDER SCHEME
FOR SEMILINEAR HYPERBOLIC EQUATIONS
IN 2+ 1 DIMENSIONS

ROBERT GLASSEY AND JACK SCHAEFFER

ABSTRACT. A second-order energy-preserving scheme is studied for the solution
of the semilinear Cauchy Problem u,, —u, —u,, +u>=0 (1>0;x,y€R).
Smooth data functions of compact support are prescribed at t = 0. On any
time interval [0, 7], second-order convergence (up to logarithmic corrections)
to the exact solution is established in both the energy and uniform norms.

1. INTRODUCTION

We study the numerical approximation to a smooth solution of the semilinear
Cauchy Problem

(1) u”—uxx—uyy+u3=0 (t>0, x,yeR),
(2) u0, x,y)=é(x,y), u,0,x,y)=w(x,»).

The data ¢, ¥ are to be smooth and of compact support. The cubic nonlin-
earity is chosen for convenience; the method easily extends to any odd power
NN =1,2,....

An energy-preserving scheme for equations as above has been known for some
years (cf. [8]). We have proved convergence for the analogous one-dimensional
situation (unpublished); the same result is obtained in [9]. In both cases, an
L>-bound on the discrete solution follows easily from the Sobolev inequality
and the standard energy estimate. However, in space dimension two, one would
need L’*-estimates on second derivatives to conclude such an L*-bound. Yet,
in analogy to the continuous case, it is difficult to obtain H 2_estimates directly:
an L*-bound seems to be needed first. The novel aspect of the present work is
that we use a recently obtained representation for the discrete solution in order
to establish the convergence to the exact solution in the uniform norm. The
rate of convergence is second-order, modulo logarithmic factors. As pointed
out above, H 2 -convergence then follows as well.
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88 ROBERT GLASSEY AND JACK SCHAEFFER

To describe the scheme for (1), choose a space stepsize Ax =Ay =h >0,
and let Az > 0 be the time step. As usual, we denote

(3) Xe=kh, y;=jh, "=nAt (k,j€L, neN),
(4) u:jgu(tn’xksyj)s

where u is the exact solution to (1), (2). We choose the largest possible time
step At as allowed by the classical CFL condition:

(5) At=h/V2.

Welet L, be the usual approximation to the wave operator 83 —A via centered
second-order differences:
n+1

n n—1
(6) (Lh“)Z‘ _ W - Uy + Uy
=

AF
n n n n n n
U, )= 2+ Uy W i1 — 2+
- K’ - A’
Lastly, we write
u
(7) G(u) = / s ds = %u“.
0
Then the scheme we analyze is
Gy - Gy
(8) (Lhu)Zj + :1+l 1 —=0
ki T Uk
with the initial values
0 1 2
(9) Up; = Dy ukj=¢kj+At-y/kj+%At D,

where

-2 3
(ij =h [¢k+1,j +¢k—l,] +¢k,j+1 +¢k,j—1 - 4¢kj] - ¢kj-

Thus we are required to solve a nonlinear implicit equation at every time step.
Solvability follows provided one has uniform control on the discrete solution
(see §2), and each uj ; will have compact support.

In §4 we show that the solution of the scheme converges to the exact solution
in energy norm. We derive there certain discrete Sobolev type inequalities as
well.

The problem remains of establishing L -convergence to the exact solution.
In §3 we write a representation for the solution of a nonhomogeneous discrete
wave equation; this comes from [3]. Other properties of the kernel .S, and an
Lz-estimate, are also given. Finally, in §5 we apply this representation to the
scheme (8) to derive the required uniform inequalities.
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In order to state our main theorem, we introduce the following standard
notation. Given a sequence {u} j} , k,j€Z, neN, we write

n n
(10) 47 oo =§(1f5>|uk,~|,

1/p
(11) "], = (Zlui,l"h2

k,j
for l<p<oo, h as above The energy density €" is defined by

n n+l n+l 2

(12) 8 2[( ij l+1 1) +(u 1+l,j)
n+l1 n 2 n n+l (2
=g ) (g =g )7

and the energy norm by
2 42
(13) lu"11°= A7) e
i, j

All sums will in fact be finite, since uZ ; will have compact support.

Theorem. Let T > 0 be arbitrary, and let the exact solution u of (1), (2) be
approximated by the solutions uz j of the scheme (8), (9). Assume the data

o,y € Cg° (RZ). Let nAt = T, h = \2At. Then there exist constants cr
and k., depending only on the data and on T, with the property that whenever
k,-At <1, we have
lu(@”, ) =" | < e AL,
n 2 1 12
iulj)lu s X V) — Uyl SepAr- [ln At} .

Constants will change from line to line and will be denoted by ¢. Those
which depend on T will be written ¢, etc. All sums, e.g. Zi, jU;;»are taken
over all of Z* unless otherwise noted.

2. THE SCHEME AND THE EXACT SOLUTION

We first cite some properties of the exact solution #. Thus consider the
equation

(1) u”—Au+u3=0 (x,y€eR, t>0)
with (u, u,) given by (¢, y) € C;° at t =0. Here, A=8j+8y2.
Lemma 1. Given data (¢, w) € C;° and an arbitrary time T > 0, there exists
a unique global C(‘)>° -solution u of (1), (2) enjoying the following properties:
(i) %/(uf +|Vul)dx + %/u4 dx = const,

(ii) sup |u(t, x)|+ sup [[D%u(t, )|,z <cp , <0
T>1>0,x€R’ 0<e<T

Jor any multi-index o.
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This situation has been treated by many authors; we refer to [1, 7]. The
uniform norm is actually uniformly bounded and, in fact, decays (cf. [2, 4]).
Once an L*-estimate is known, L’-bounds on higher derivatives follow easily
by differentiating the equation and applying energy estimates.

We introduce here also the fiee solution v(t, x):

(14) @' -Aw=0 (t>0, x,y€R),
(15) v(0,x,y)=0(x,y), v,0,x,y)=w(x,y).
v and u share the same data.
Now consider the scheme (8), (9) whose solutions u; j are to approximate
u(t", x,, ;). Since At = h/V2 by (5), we may rewrite (8) as

n+1 n—1 1 n n n n

Upj = =ty Tyl ey e ot o]
+1 -1

(16) 2 | Gluy; ) — Gluy; )}

- At un+1 _un—l
kj kj

with #°, u' given by (9).
We define for u # v
Gu)-Gv) (u+w)

(17) H(u,v)= Z2 T = 2 (' +v7).

Then (16) is

n+1 n—1 1 n n n n
Up; = — Uy, +§[”k+1,j+uk-1,j+“k,j+1+uk,j—1]
2 2
At n—1.3 At n+l n+1,2 n—1,2 n+l1 n—1
_T(uk! ) ~ 7 Uy [Cg; )"+ (e )"+ (g )y )1,

or
18 1 Atz n+1,2 n—1,2 n+l n-—1 n+l _ bn
(18) +—4—{(“kj ) + (uy; ) TR } Upj = By
where

2
n n—1 | G n n n At n—1.3
(19) by =—uy; +§[uk+l,j+uk—1,j+uk,j+l+uk,j—-l]_T(ukj ).

We can write (18) as an implicit equation

(20) s =g(s)

to be solved for s = qul , with

n

2 - .
1) v s+ Gl
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Lemma 2. Assume that there is a constant ¢y such that

max sup|u, .| <c¢
0<l<nkp|k| T"

Then, if At-c; is small enough, we have

(1) (20) is uniquely solvable for s = uz;’l on, say, the set |s| < 8cy.

(ii) Let ¢, ; =, ;=0 for |k|+|j| > R. Then for every n,

Uy, =0 for k| +|jl 2 R+n.

Proof. To (20) we apply a standard fixed point theorem (cf. [5, p. 86ff]). Thus,
take s, = 0 and define
L1 =8(s) (v=0,1,...).

By hypothesis, |bk | < 4cT for At small enough. Thus, on the set {|s| < 8¢}
we have

€(9)] < 15 siac | Al |
T AR +sup AP |2 4
4c,. [8e AP ¢ At 2. 2 1
< T |1~  “T—" — =
< l — + 4]517cTAt52_/1

for At small enough. If we can show that
|So - g(so)| <(1-4)- 8cTa
we can apply Theorem 1, pp. 86-87 of [5]. However, s, =0 and

18(0)| = il < 4c
L+ (A2/4) - (up; )~ T
and this proves (i).
(ii) is easily proved by induction. The data have compact support by hypoth-
esis. Assume that ui i has this support property for / < n. We see from the
definition (19) of &, that

be;=0 if|k|+|j|>R+n.
Since the coefficient of u"+l in (18) always exceeds 1, we are done. 0O
3. THE REPRESENTATION
We cite a number of results from [3]. There, the solution to the problem
n n
(22) (L) = fis
1 2
(23) ukj brj> W=y ALY+ ALD,
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is represented as follows:
n+1 n+l1 n
(24) Upj =Vp; + (S
Here, v,fj is the “discrete free solution”, and Sf is a linear operator whose

action on f is given by a convolution of f with a discrete kernel Sll,k defined
by

p
I m(l—m\(l-2m [—2m
2 550= 2" ) G ()
Lemma 3 (from [3]). (i) We have SIl,k >0; infact, for k >0,

I-p
I (F8) o k. i=20—K) g2
Spk—m“‘ [P, )1,
p
where P;"’ﬂ )(x) is the Jacobi polynomial of degree p with parameters «,
(¢f [6]). Here, the parameters rangein k| =0,1,2,..., p=0,1,...,[//2],
[=0,1,.... Outside these ranges, Sll,k is defined to be zero.
(ii) There holds 3=, , Sb, = (1+1)-2".
(iii) Let 0 = (0,, 6,) be the dual Fourier variables in the discrete Fourier
Transform & :

00,, 0= e Oy =Fuo).

k’j
Further, define an angle @ by
(26) cos i = $(cos 6, + cosb,).
Then
. ~ [n/2]}
—1 sm(n+1)t//] —n n
—_— =2 6k il n—2 S k-
{ sin i/ kj ;::0 [k|+1jl, n—=2p~p

Proof. (i) is Theorem 2 of [3]. There, it is also shown that S satisfies the
recursion
i

=2
27) Sy =Sy Sort it T S kot +Somt ik — 45,01 k-

Since Sék > 0, we may sum this over p, k to obtain (ii) (cf. the last page of
[3)). For (iii), we obtain from the material following Lemma 1 of [3],

sin(n + 1)y %:/2]2 m)
sin k) m

[(" 2m)/2) n—-2m\/(n-2m s
) Zo p |k| +p \k|+|j],n—2m—=2p *
p=

(28)
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We replace p by p + m and then invert the m, p summations. When use is
made of (25), (iii) results. O
We do not require the explicit form of S' ok -

Given these facts about S’ ok » WE can write the free solution vk ; "in (24) as
follows:

+1 1 in D2l n—1
n —n -
vy o=-2" ) > Sp. k—aPap
p=0 . a,p
fa—k|+|B—jl=n—1-2p
29
(29) [n/2]

— 2

+27" % Z S;"k_a(¢aﬂ+Aty/aﬂ+%At D).
a?ﬂ

la—k|+|f=j|=n—2p

This is the Corollary to Theorem 1 in [3]. Theorem 1 of [3] itself gives the form
of the operator Sf:
, it [//21

(30) (SN, = At Z 2! ): E Sy keadiy

Ia k!+|ﬂ J| =/-2p
We require one more piece of information about the kernel S:,k .

Lemma 4. There is a constant ¢ such that

[n/2] 5
YISy <c-4"-In(n+2)

p=0 k
forall n=1,2,....
Proof. Consider the result of squaring the expression in Lemma 3, part (iii).

When this is carried out, one obtains many “cross-terms” involving terms of the
form

n n
Ok 11, =200k +151., n—20Spk Sai
for p # q, each of which vanishes. Thus, the Kronecker ¢’s in (iii) of Lemma
3 act as if they were an orthogonal set, and we get

| fsin(n+ D)o\ 17 /3
(31) [37 (—-—EW—)“} =4 Z()5|k|+|j|,n—2p[s k]
p=

We sum this over all k, j. Performing the j-summation first, we see that there
are at most two nonzero terms on the right, each of which is unity. Hence, from
(31) and the Parseval equality we get

[n/2]

(32) YN S < / / [SIn(s’:n+t// “’] d6, do,.

p=0 k
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We call .7, the integral on the right here. By (26),
L1 B 0, +06, 0,-6,
cos Y = E(cos 60, +cosb,) == cos(—7—> cos(—z—— .

Introducing new variables x = (6, +6,)/2, y = (6, —0,)/2, and using elemen-
tary considerations, we obtain

/2 pRf2 [ ~92
F=c / [s_nmw_v/] dxdy.
0 0 sy

where now cos {7 = cos x cosy, and hence

(33) Wz%—sin_l(cosxcosy), 0<y<m.

Denote by 4 = {(x,y): 0 < x,y < n/4}, and let A° be the relative com-
plement of 4 in [0, #/2] x [0, ©/2]. On A°, at least one of x,y lies in
the interval [n/4, n/2], and hence cosxcosy < 1-1/v2. It follows that
sin_l(cosxcosy) < sin_l(l/\/i) = n/4, and hence that > n/4 on A°.
Therefore, siny is bounded below, and the integral over 4° is bounded uni-
formly.

On A itself we use the inequality

sin(n + 1)y
sin {7

-2

2
) <cmin((n+1)%, y7)

and these observations: First, for 0 < ¢ < /2 we have
(34) cosg > 1—1g
by simple Taylor series. Secondly, on 4 we have
cosy =cosxcosy > 1/vV2-1/V2=1,
and hence
0<y=m/2- sin” ' (cos ) < n/2 - sin”’
By (34), then,

(1) = /3.

(35) cosyy > 1— 1yt

An elementary series argument shows that cosx < 1 — x* /4 for 0 < x<m/4.
Thus, on 4 we have

2 2 2.2

cos ¥ = cosxcosy < (l —%) (1 —%) = —%(x2+y2)+x_1)6_’_
<1—l(x2+ 2)+x—2~(£)2<l—c(x2+ 2) with ¢ >0
S Tgw T \g) = y :

Combining this with (35), and defining p2 =x*+ y2 , we get

1-1y’ <cosy < 1-cp’,

N—
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i.e.,
(36) W >cp onA, withc>0.

Therefore, we have

2 -2 n/2v2 2 -2
//gc//min{(n-l-l) . p }dxdysc/ min{(n + 1), p"2}pdp
A A 0

1/(n+1) 5 n/2v2 dp
=c / (n+1)pdp+/ — | <cln(n+1),
0

1/(n+1)

and the proof of the lemma is complete. O

4. ENERGY ESTIMATES

In this section we make error estimates in the energy norm. We begin with
the scheme in the form (8):

+1 -1
Glup') - G, )
n+l n—1
ukj ukj

(Lyu)yg; + =0.

Multiply this by (uZ;'l —uy; ; 'y and sum over all k, j. We sum by parts that

term which approximates Au . If we call

n+1

;™ —ul )
kj kj n+l n+l n n
= Z + 3 % {(uk+l J T ey~ W)
n+1 n+1 n n
(37) Uy iy — U Yy oy — ukj)}

+ G )+ G|

then we have the following

Lemma 5. (i) We have &" = ¢"™', and hence, é" = ¢°. Thus, the scheme

preserves a discrete energy.
(ii) For every n, é" is nonnegative and can be expressed by

n+l n 2 n n+l 2
4At22 [ uk+ly_1) +(ukj-uk+1,j)
n+l1 n 2 n n+l 2
(U — e )+ (=g )]

+ Z (G ") + Gluy )]

(iii) Pure spatial dzﬂ"erences evaluated at the same time can be bounded:

-2 n+1 n+1 2 n+l1 n+1 2 N
h Z[(ukj — Uy ) Uy, Uy o) TScen.
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Remark. Recall the energy density definition &, ; in (12). We see that
(38) Zakl + Z[G () + G )],

as expected.

Proof of Lemma 5. Part (i) is a standard calculation and is omitted. The sum-
mation by parts produces no boundary terms, since uZ j has compact support

for each n. As for (ii), we write é" (using At = h/\/2) as

[ }: (G} + G ukj)}}

n+1 n 1, n+1 n 2
[ (84, —ukj) + 7y = Uk )

k,Jj
1 n+1 n 2
+Z(uk,j+1 — U 1)
1 n+1 n+1 n n
t3 [y = Uy Iy ;= Up)
(39) kJ
n+l n+1 n n
(U o — e Nty g = Uy)]
1 n+l n+1 n 2
=72 [y, uk_]) + Uy, = Uperr )
k,Jj
n+1 n+l n n
+2(uk+1 T Uk )(uk.‘.l,j_ukj)]
1 n+1 2 n+1 n 2
+Z [(uy _ukj) +(uk,j+l_uk,j+l)
k,j

n+1 n+1 n n
+ 200y — Uiy Wity = )]

Now we use the elementary relation
(A-B)Y?+(C-D)’+2(C-A)(D-B)=(A-D)*+(B-C)°

in each of the above lines, and (ii) results.
For the proof of (iii), we have from (ii) that, e.g.,

o n+l n 2 n+l
4Al ée > Z [( Uy _uk+1,j) +(uk_] Uiy j) ]

n+l n 2 n nkl 2
= Z (" = e ) F Wy = Uiy )]

However, since
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(as can be established by elementary calculus), we obtain
n+1 n+1 2
= 2 Z (e = Uiz, ;)
and this is (iii). O
Now denote by ‘L‘Z j the truncation error, i.c., the amount by which the exact
solution u fails to satisfy the approximate scheme:

+1 -1
o u(l™, x, vp) = 2u(t”, x, ) +u L X, p;)
kj At2

_ %[u(t" s Xpy1s V) + ut", x,_,, )+ u(t", x,, )
+u(t”, x,, Vi )——4u(t",xk,yj)]
. GQu(™ s %, 3) = "™, 5, ).
u("t', Xps V)= u("! s X5 V)
Simple Taylor series arguments give us

Lemma 6. On any strip [0, T] x R?, there is a constant ¢y > 0 such that
[t < er AP

In the proof we simply take enough L*-derivatives in Lemma 1 so that
4
sup ||D u(t, - <c
sup [D°u(t, o < 7.

via the Sobolev inequality. Incidentally, we have an estimate for |[u(#)||, in
terms of c||Vu(t)||, by the support property and the Poincaré inequality.

We will need discrete versions of certain of these classical inequalities, which
take into account the special type of square integrability which arises from our
energy estimates.

Lemma 7. Let the sequence {w,f j} have compact support for each fixed n. Let
[0, T] be an arbitrary time interval with nAt = T, h =/2At. Then
+1,2 +1 +1 -2
Z(w:j)<cTE(w" sz)At
k,j
Remark. This is a discrete Poincaré mequahty.

Proof of Lemma 7. Using the support property, we write
k
n+l1 n+1 n+1
w = Y (wi —wD )

I=—n—c
Step 2

for some constant ¢. Then

1/2
n+l 1/2 n+l n+l |2
[we; 1< cn (E (w); _“’1—2,1)) ’

i
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and hence
n+l n+1 2
n+1,2 2 n+1 n+l |2 2 (wlj w/—2,1)
D (wg ) Sen” y o (w)y —w, ;) =T A7 o
k,j 1, L,J

Lemma8. Let h >0, and let {w, j} be any sequence of compact support. Define

w, —w : w,.—w, .
_ _k k=2,j _ kj k,j=2
(41) Sy, = Al = k2

As in (13), define, for i=1, 2,

1/2
6wl = - 6w, k%, Jlwll, = 2<wk,>2h2) :
k’j

k,j
Then:
(1) There holds I[wll% <6, wll,lI6,wll; -
(ii) For any integer N we have
I8,w)"ly < exlldawly i)™,
Remark. (i) is a discrete analogue of the Sobolev inequality ||u|,, Jn—1) S cllVull,
for x eR".

N-1
I

Proof of Lemma 8. By the support property we can write

k
W= Y, (W, —w_, )
=—n—c
Step 2
for some constant ¢. Similarly,
J
Wy, = Z (Wy, =Wy )
v=—n—c
Step 2

Therefore,

‘wkj|2 hS [lelj_wl—Z,j':' [E W, '—wk,u—ZI:I .
! v

Summing this over k., j, we obtain

2
> lwyl Dolwy—wiy DD Wy, — w2l
k,Jj i k,v

IN

= h2151w,j| hZ{ézwk,,l ,
L 1,y k,v

and this proves (i).
For the proof of (ii) we recall the identity
N N =k v-1—k
x' -y =(x-y) ) xy ,
k=0
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from which we get

N N N-1 N—1
X7 =y <celx=pl(xI" T+ T )

Thus,
N N
v, w)" = (w_, )7
|61(wkj) |E ! h !
lw, —w |
Wy k-2, N—1 N—1
C_'JT—'J_(lwkjl + |w,_, jl )
We multiply by h* and sum over k, j:
N-—1 N-—1
16, (w ||1 < CZ/I |9, wk1| |wk1| + |'wk_2,j| )
k,Jj
1/2 1/2
2N hy,
<2 Zh |§’wk1 Zl wy | (
k,j
= 2¢]l8,w],ll(w) .

as desired. O
Corollary. Denote by {u; j} the solution of the discrete scheme (8), (9). Define
= |51u"| + |(52u"|.
Then the following estimates hold:
i) [|u"|l, + lou"|l, < const.
(i) [|u"[ls < const, [[u"||s < const.
Proof. From the energy equality in Lemma 5, part (ii), we get the bound on
|u"||,. Then, using part (iii) of Lemma 5, the bound on [|du"|, follows. For
part (ii) here, we apply parts (i) and (ii) of Lemma 8 with N =3 and w,; =
up =
3,2 3
™15 < 18,1 18,
2
< c||61u I 1€ u ”2 ”52unl|2”(un) Il
< c||du"|3]1u" ||} < const .
The bound on |[u"||y is similar. O
Remark. Tt is clear that ||u" |, < const forany p, 4<p<oo.
Now we can estimate the error in the energy norm. Define

(42) ekau(t ,xk,yj)—ukj.

We recall the definitions

(17) H(u,v)=@£%w)=%(u+v)(u2+vz),
(13) " 1" = k" e,
k,Jj

where &, , is given by (12) as a sum of squares.
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Theorem 9. Consider an arbitrary time interval [0, T]1 with nAt = T . Denote
by &" the energy of the error e" in (42):

n+l n+l1 2
WZ[( —ei,) (e el
(43)

n+l n 2 n n+1 2
+(eg; —e i) te;—e )]

Then there exists a constant ¢ such that for At sufficiently small,
E" < e [8°+ A
Remark. The square of the energy norm of the error e” is thus given by e,

Proofof Theorem 9. As is standard, we write the scheme (8) for uZ , and subtract
from it the equation (40) defining the truncation error to get

n—1

(Le) A+ Hu(™, X ¥i), u(t™ 5%, ¥))

(44)
—H(quH Uy - Te; =0

with the initial values

0 0
€, =u(0,xk,yj)—ukj =0,

e = Ul X, y)) - (¢k1

(45) '

=@, + A c//kj) = 0(Ar)

uniformly on [0, T] x z*.
Applying the mean-value theorem, we can write the nonlinear term above
(i.e., the difference of the H’s) as

(46) H,-ef +H, ¢,
where the overbar means the gradient of H, VH = (H,, H), is evaluated at

some intermediate point on the line segment joining

1 —1 1
™", xe, v, u™ X, p) and (ug', ).
We use the expression (46) in (44), multiply the result by e,:;rl - e,fj_l , and
then sum over all k, j. As in (37) and Lemma 5, we then get

n—1 n+l n+l n+1 n—1
g =& +E {H, e, (e; - )+HU k] (ekj —-€; )}
k,j

(47) _
-—thj(e:fl - e H=o.

In each of the last three terms there appears the expression e,i'“ - e,fj'l , for
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which we have the /,-estimate

n+l n 12 n+1 n n—1,42
> (e; — = Z (€ — €vr )+ (€ ;= €; )]
k,j k,j

1 2 —-1,2
(48) 2Z(e2,~* —ep )V H2Y (e e )
k.j
< 8At -E?"+8At2-é;"".

Hence, for the truncation error term, we have by Lemma 6 and the support
property,

n n+1 n—1 2 n+l1 n—1
Yotile —e )| ScpAC Y0 ey —e |

k,j k,j
[k|+[jl<cn

1/2
(49) < af - (en) P (et ey
k,j

<c AP n-AWE"+ETH'
=, AP &+ &) P <o al 4 an N+ ETY,

where we have used (48).
Next, for the H -term in (47), we write

n+l n+l n—1
EH (€ —e; )

1/4 1/4 1/2

— 4 +l 4 +1 1,2

(50) <[> IH, D . Yo (e —e )

k,j k,j
1/4 1/4
& on—1.1/2 - 4 1 4
<cAu & + &Y IS H, Z| o ,
k,j

where we have used (48). For the last term, we have by Lemma 7 and the
definition of the norm in Lemma 8, and from the statements (i), (ii) there,

Zlenﬂ 4 = cAt 2”en+l”: _ CAI_2||( n+1) ”2
-2 1,2 1,2
(51) < A8, (€™ 18,7,

< cAr2|8(e™ T < carise™ 3™ 13
<A AP EN cTPE A < e AR E"Y.
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Inserting this in (50), we get

ZH en+l elr:;—l _er_l)'
(52)

~

1/4
<c A E &M Z|Tlu|4} .

k,j

Now by definition (17), H, (and H, as well) grow at most quadratically:

(53) H |+ |H,| < c(u’ +v7).

Hence,

(54) [H," <™, xe, y)* + @™ x v ) + o ) + (g D'
Now by the Corollary to Lemma 8, the discrete /;-norm of u, kj is bounded. The

L%-norm of the exact solution is bounded by the energy bound on the L*-norm
and by Sobolev. Hence,

(55) SH <e-a?
which, when inserted into (52), gives us
(56) Z Hlee Nep ' — e )| < cratE" + &7,

The term in (47) involving H, can clearly be estimated in the same way.
Inserting the estimates (49), (56) into (47), we get

(57) "<& 4 ME" +E) +e,AL,
or
(58) (1= c;ADE" < (1+ ¢, ADE" ™! + e L.

The constant ¢, here depends only on the data ¢, y and on T'. For At
small enough we have (1 — cTAt)_1 < 14 2¢;At, and so (58) yields
(59) E" < (1+4c, A" + ¢ AP .
Iterating this, we get
n—1
E" < (1+4c,80"8° + ;A0 (1 +dc,Ar)
=0
< (1 + 4c,A0"[E° + ¢, AP
4c, T\" = ~
- <1 + %) [£° + ¢, AP] < ¢, [€° + A1,

which is the claim of Theorem 9. O
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We can now eliminate the &°-term as follows. By choice of data for ug jou ,'( j

we have

0 1 3
ekj=0, ekj=0(At),

the order bound being uniform on [0, 7] X 7> Hence,

~ 1 _
(61) = 55 (@) <ea? S Af<oar,
At P P
[k|+j1<c/At
Corollary. Denote the energy norm of the error e, = u(t", x,, ;) - up,; by

lle I = A2 -&™ . Then on any time interval [0, T] with nAt =T, h = 2At,
there exists a constant c;., depending only on T and the data, such that el
< cTAt2 for At small enough.

5. UNIFORM ESTIMATES
In this section we will show that the errors u(¢", x,, y,) — 4,; converge

uniformly to zero at (essentially) the rate A7 . Thus, the hypothesis of Lemma
2 will be superfluous, since sup, ., |u(z, x)| is known to be bounded. We

begin by estimating the convergence for the free solution. Let O, =D .+ ¢>3 .
kj kj kj

Lemma 10. Consider a discrete free solution: (th)zj =0, v,gj = @y v,lj =
b + ALY, +At2&>kj/2. On any interval [0, T] with nAt = T, h = 2At,
there is a constant c;., depending only on the data and on T, such that
sup |v(t", x,, ¥;) — vl < AL

k ’ j
Proof. Let the truncation error ?Z ; be defined by (40), with u replaced by v
and the nonlinear terms dropped (i.e., G(-) = 0). We define
(62) ij=U(tn,xk,yj)_UZj'
Then py; satisfies the recursion

n+l n—1 Ir 7 n n n 2 _n
Pej =—Prj T alPror it Proy it Pr jrr tPr o] AL T

in analogy to (16). Since v € C 4[[0, T] % ]Rz] and is bounded in that space,
[Te;1 < AL
The initial values are
A -

(63) £y =0, ;=0 X, ¥) = | by, + ALY, + 5D,

j b
and hence

(64) |oy,| = O(AL)
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uniformly on [0, T] x Z* . The representation formulas (29), (30) then give us

[n/2]
n+l —-n n 1
Prj = Z Z Sy k—aPap
Ia k|+|ﬂ J| n—2p
(65) n 1 [1/2]

! —n—I
+ At 22 Z Z S, k—aTag -
Ia kI+I/3 j| =l-2p
By Lemma 3, part (ii), we have Ep X pk =(1 +l)-2 . Therefore,

[n/2]

n+1 —-n 3 n
PAR LYY DI DI (P
p=0 |a—k|+|f—j|=n—2p
n 1 [1/2]

(66) +cpAL Zz D DI DI
p=0 |a—k|+|f—jl=I-2p
n—1
= cpAC(L+n) + ¢, A0 Y (14+1) < cpAl,
[=0 .

as desired. 0O

Theorem 11. Consider an arbitrary time interval [0, T]. Let nAt =T, h =

V2At . Then there exists a constant ¢y, depending only on T and the data, such
that

n 172
i‘flj)lu(t s X s yj) ukjl < CTAl [ln Atjl

for At sufficiently small.

Proof. As before, we define the errors by
(42) er=u(t",xk,yj)—qu

and the truncation error rZ ; by (40).
The error equation (44) can be written

(67) erl = er_l + %[el'clﬂ,j +eZ—1,j +e1?,j+l +eZ,j—1]
+AL T + Atz{ﬁue,f;l +H,ep '},

where we have used (46). The initial values are

(68) e, =0, ¢,=0(@Ar

uniformly on [0, 7] x Z* . We represent the solution ,f 1 oof (67) using (24):

(69) eI:}H = (efree)Z;l + (eNL)l’clj :
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n+l1

Here’ ”efree ”oo —

cTAt from Lemma 10, and

2n—l [[1/2]
n _
(eyL)y =ACD 273
(70) =0 p=0
n+l—/ n—1-/
Z pk a[Tﬂ +Hu af +Hv'eap ]

la—k|+|B—jl=I-2p

By Lemma 6, 7, i = O(Atz) uniformly on [0, T X Z* . Hence, the truncation
error term in e,, is dominated by

n 1 [1/2] n—1
(71) CTAt ZZ E Z Spk a=cTAt4Z(1+[)SCTAt2’
p=0 |a—k|<[-2p =0
where we have used Lemma 3 (ii).
Now consider the nonlinear term involving }_Iu in the expression e, ; call
it #,. Our method of estimation will be such that the term /7, is handled in
the same way. We write, for indices # with | —j|=/-2p—|a—k]|,

"t 12 1/4
e (S o) (£ me)

1=0 D,a p,a,fB

1/4
Z | n+l 14)
p,a,p

In view of Lemma 4, the square norm of S appearing here is less than c -
2/(In(/ +2))"/*. The sum involving [H,|* has been dealt with in (53), (54); the
result was given in (55):

(72)

(55) SH <car?
k.
As for the last term in (72), we recall (51):
(51) Yolep 't < e AP (B < ;AP + ALY < oAl
k,j

by Theorem 9 and (61). Thus, from (72) we get

n—1
)| < e, A > In' P (1 + 2)[eAr*) e a0
1=0

n—1
(73) <0 Y (1 +2)
=0

R

1/2
< cTAt (n+1)-n< cTAt [l Alt]
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for At sufficiently small. As mentioned above, the #,-term is estimated simi-
larly. Therefore, from (69) we conclude that

n+1 2 1 172
Sl <crAt [In— R
ple < o

which proves the result. 0O

Concluding remarks. 1. Suppose the nonlinear term were #’ instead of u° ,
where p is odd, p > 5. The energy (both continuous and discrete) gives a
bound on #’*' in L' , and Sobolev shows that #? is then bounded in L', for
p +1 < g < oo. Thus, the preceding analysis can be carried through for other
power functions.

2. We point out that we approximate u(At, x, , y ;) by u}c ; to third-order

accuracy. This allows us to use only L' and L’ estimates on the kernel Sll,k ,
and seems to be where the “loss of derivatives” problem arises.
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